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A BAYESIAN MODEL FOR DETERMINING THE OPTIMAL

TEST STRESS FOR A SINGLE TEST UNIT

By

H. F. Martz, Jr. and M. S. Waterman

ABSTRACT

Consider the case of a single test unit which must be tested at some
level of test stress. Suppose that the test stress level is free to be

determined, and that only the survival or nonsurvival of the unit is

observed. It is assumed that the unit is designed to withstand a known

and specified design stress level. A Bayesian model is developed for

determining the required level of test stress which maximizes the expected

probability of survival at the design stress.level. Engineering experience
from similar past tests on similar units is used to fit the model. A

practical application illustrates the method. The sensitivity of the

procedure to changes in the parameters used in fitting the model is also
examined. The procedure is fairly insensitive to three parameters

required in fitting the model in the example.

I. INTRODUCTION

In many engineering testing situations, only a single unit is available

for testing. The unit may be a component, subsystem or complete system.

Suppose that a single test unit is to be tested at some level of a single

test stress which is free to be selected by the test engineer. Further,

suppose that the unit is designed to withstand a known and specified level

of design stress. It is further assumed that, once the test is conducted,

only the survival or nonsurvival of the unit is observed.

i . . . .
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For example, consider the case of a fuel container of a radioisotope

thermoelectric generator (RTG) system, which is the power supply for a

space satellite. The radioisotope fuel container is designed to withstand

a certain impact onto flat plate steel, such as might occur during a launch

pad overpressure accident. As part of the required safety analyses,

tests designed to simulate such an accident must be performed. A proto-

typic unit, using simulated fuel, is impacted onto flat plate steel at

some test velocity which must be determined. This test velocity may or

may not be taken to be the design velocity. According to a precise defini-

tion of failure, e.g., if the unit ruptures to the extent that one or more

fuel elements are exposed, the unit either survives or fails the test.

This example will be further considered in Section IV.

The model to be developed incorporates the following aspects. Suppose

that the test unit survives a test stress which exceeds the design stress.

It is reasonable that this should increase the experimenter's confidence

in the ability of similar units to survive the design stress. On the

other hand, if the test unit is tested at too great a stress, the unit is

likely to fail, thus providing little information about the unit's ability

to survive the design stress. The model effectively trades between these

two alternatives in seeking the optimum desired level of test stress

The precise definition of "optimum" will be discussed in the next section

The philosophy of the proposed model is to test at a high enough

stress level to provide assurance but not failures. This contrasts with

the usual statistical philosophy which is to test at various levels, some

of which are high enough to insure failures. Of course, more than one unit

must be tested in this case. Easterling (1975) develops an over-test

procedure, referred to as a "sensitivity test", which is based on such a

statistical philosophy. Much of the literature on accelerated life testing

considers the effect of stress on certain failure characteristics. An

excellent bibliography on accelerated life testing is provided by Lowe and

Waller (1975).

1. '[H�TE MODEL

Let Sk denote the event'that the test unit survives a test of stress

k'S, where SO is the given design stress. Also let Pk= Prob(Sk). A

Bayesian approach is used, in which the uncertainty in Pk is expressed by
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assuming that Pk is a random variable having a modified negative-log gamma

prior distribution with probability density function (pdf) given by

f(1/ k)-i (-CnP;- cc,<-)l
B k r -(cc O<,<, (1)$akctS (a)0<,,

This distribution may be derived from the fact that, if X has a gamma

distribution with shape parameter a and scale parameter a, then T'Eexp[-Xk ]

has the distribution given in (1). Here k is the test stress, expressed

in units of design stress S . The parameter 6 appearing in (1) is used to

rescale k, for reasons to be discussed in the next section. The usual

negative-log gamma distribution may be obtained by letting k:6El. The

negative-log gamma distribution has been previously discussed and used in

reliability by Springer and Thompson (1965,1967), Mann (1970), and Mastran

and Singpurwalla (1974).

The mean and variance of (1) are

E(P;ct,a,6) (1+k 6)-a (2)

and

V(P;a,B,6) (1+2Bk3- - (l+Bk )-2 (3)

respectively. It might be expected that the mean survival probability

curve have a reflected S-shape as a function of k. The mean given in (2)

has this property for certain combinations of a,f3,6. It is illustrated

in Figure 1 for several choices of a with ý and 6 computed according to

the example in Section IV. Figure 2 shows the standard deviations for

the same set of distributions. A procedure for identifying a,43 and 6

will be presented in the next section.

The distributions of interest are the two posterior distributions

of P, conditional on the survival (nonsurvival) of the test unit. By ai

simple application of Bayes' Theorem, we obtain the two posteri.or pdf's

f(PISkea,6,) = p( -<l,(4)
k ,r(,)(l+Bk >O
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] P ~ ~ ' ') _ (l-P)p (I/Bk 6)-1 (_/enp) a-1 0<_ <_ý <_k _<1

f (pisk;a ) a6 6 11 0,,6 (5)
.3k F(cCO[l-(l+A ~ > 0

where Sk denotes the event that the test unit does not survive a

test of stress k.S The cumulative distribution functions (cdf's)

associated with (4) and (5) may be expressed in terms of the chi-

square (x2 ) distribution as

~2 -2 611k)nF(pISk ;a,6,6) = Prob P<pISbk;c ,61= P-(l+2k)/> 6 ) (6)

and

F(piSk;a,f, 6 ) = ProbIp<plgk, ,,I

Prob X2 Z 1  6) aProb X2>:2(1+>k 6 )LnJ

) !O (7)i-l+B6) -a
l-(l+ak)

where denotes a X2 random variable with 2a degrees of freedom.

The posterior means of (4) and (5) are easily computed to be

E(P kI Sk0(1,66) = 6+•• (8)/1+2k 6  (8)

and

E(PklSk;ac,6,) =(l+k) -(l+k 6 k)-a1.(16k)-a .(9)

The unconditional probability of survival and nonsurvival

of the test unit, when tested at stress level k, are

Prob(Sk) = (l+gk 6 ) , (10)

and

Prob(Sk) = l-(l+ak )-, (11)

respectively. Note that, since only a single unit is to be tested,

(10) is the same as (2).
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The model for use in obtaining the required test stress level

is based on the following two propositions:

If the test unit survives a test stress which exceeds the

design stress, then remaining units should have a higher

expected probability of survival at the design stress than

if the test unit had been tested and survived at the design

stress.

If the test unit does not survive a test stress which exceeds

the design stress, then remaining units should have either

the same or a higher expected probability of survival at the

design stress than if the test unit had been tested and failed

at the design stress.

In both propositions, the increase depends upon the difference

between the test and design stress levels. Mathematically, let us

quantify the first proposition above according to

E(P1Sk)O gl(k)E(PlfS1 ),k>l, (12)

where gl(k) is a suitably chosen function of k which has the follow-

ing properties: (i) gl(l) 1; (ii) gl(k)-l/E(PljS as k--; and

(iii) g{(k)>O, at all points of continuity of gl(k). The second

property guarantees that, if the test unit 6urvives a test of infinite

stress, then the remaining units are expected to survive the design

stress with probability equal to 1.

Similarly, the second proposition may be quantified as

t,(PlI1k) = g 2 (k).E(P 1) 1§ ) ,k>l, (13)

whore g2 (k) is a suitably chosen function of k which satisfies the

following properties: (i) g2(1) = 1; (ii) g 2 (k)->lE(Pl)/F (P1 S]l) as

k -... ; and (iii) g 2 (k) >0, at all points of continuity of g2(kJ. The
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second property insures that, if the test unit fails a test of

infinite stress, then nothing additional has been learned from the

test about the ability of remaining units to survive the design stress.

Particular choices for gl(k) and g 2 (k) will be considered in Secs. III

and IV.

Now let us consider the optimization model itself. We wish to

determine the value of k which maximizes the expected probability that

S occurs, given that we test a single unit at test stress k.so. That

is, we wish to maximize

E(Pl;a,B,6) = E(Pl Sk;a,•,6)Prob(Sk)

+E(PlISk;a'8 6)Prob(Sk). (14)

Upon substituting (8)-(13) into this expression and simplifying,

we obtain

E(Pl;a,B,6) : [y 1 gl(k)-y 2 g 2 (k)](l+k 6)-C + y 2 g 2 (k), (15)

where

,1 (16)

and

1+26__ 1-Y 1
-2 - _ a (17)

(1+u) -1 (I+a) - 1

In order to maximize E(P 1;a,S,6), it is useful to solve

ýE(P 1 ; a, B, 6) = -ylga(k)_Y29 (k)](l+ýk )-C

ýk

6-1
-a86[ y1gl (k) - y 2 g 2 (k)] k + y 2 g2(k) =0. (18)

The solution to (18) yields the desired optimal test stress k 0

The solution to the problem of finding k such that (14) f' maximized

is discussed in the next section.
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I11. FITTING THE MODEL

First, let us consider a procedure for estimating a, 3, and 6. Since only

a single test unit is assumed to be available, the suggested procedure is neces-

sarily subjective. Consider the following two questions:

Question 1: Prior to the test, at what stress level k will the test unit

have approximately a 95% expected chance of survival?

Question 2: Prior to the test, at what stress level k2 will the test unit

have approximately a 5% expected chance of survival?

Now k2>kI and both are expressed in units of design stress. Then

(1+B k)-ai=l2
i here' i=195

where .95 and •2 .05. Then

8 = (il/c.l)kia i=1,2, (18)i

and further simple algebra yields

_ ln[(•i/a l)/(F,1I/a1) 
(19)

ln[klI/k 2]

Therefore we have 8=6(a) and 6=6(a), so that our three parameter model has been

reduced to a one parameter model.

Since the prior variance of the survival probability is given by

6O-a 6 2aV(p;a,8,6), = V(a) = (1+28k )_- (1+8k )

the parameter a may be chosen to coincide with the experimenter's prior estimate

of the variation at some stress k. For the examples we have worked out, V(a) has

been observed to be a decreasing function of a.

Two other functions, gl(k) and g2 (k), must be specified. In our calcula-

tions, we have taken

g (k) = kc, k<K

and

g 2 (k) = 1, k<K
where K is an unspecified upper limit of test stress beyond the range of practical
interest. For k>K, suitable adjustments would have to be made to thcse choices

of g (k) and g2 (k) to ensure that the appropriate asymptotic properties discussed

ii Section IT are present.
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Recall that

E(P1!Sk) = gl(k) E(P 1 IS1 1

= kc E(P ISI)

The choice g2 (k) = 1 expresses the situation in which, if the test unit

fails a test of stress k,l<k<K, then the expected probability of survival is the

same as if the test unit had failed a test at the design stress.

To determine c, consider the following question:

Question 3: Prior to the test, suppose that a hypothetical test unit was

tested and survived an increased test stress level. At what stress level k 3 will

the expected faiiui7E nrobability, E(l-PISk ), be one-half as large as the expected

failure probability of a hypothetical unit which was tested and survived the design

stress, E(I-PI Is)?

Of course, k3 must also be expressed in units of design stress. Then

1 E(PIS 1) = 2 j1 - E(PISk3I

or(1+2a 21 c (1+28
r1- -3 k 1 -•

Some elementary algebra yields

81+21 )

ln[( 2  /ln[k 3 ]1 (20)

Therefore, for the specific choice of gl(k) and g2 (k), the parameters 8,6, and

c are given by equations (18), (19), and (20). Then, when a is chosen in accord

with the experimenter's estimate of the variation, the parameters of the model are

completely determined.

IV. EXAMPLE

V As indicated in the introduction, the example considered here concerns the

fuel container of a radio-isotope thermoelectric generator (RTG) system used as

the power supply for a space satellite. In the radioisotope fuel container there

are a number of fuel elements, which are simply spheres which contain the fuel.

The RTG is designed to withstand impact onto flat plate steel at a certain veloc-

ity so that, for example, launch pad accidents will not release radioactive

material to the environment.
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The answers to questions 1, 2, and 3 of Section III were solicited from a

group of engineers at the Los Alamos Scientific Laboratory responsible for such

impact tests. The answers for one particular RTG si'stem of interest were as

follows:

1) At approximately 140 fps, the test unit. should have roughly a 95%

expected chance of survival.

2) At approximately 180 fps, the test unit should have roughly a 5%

expected chance of survival.

3) At approximately 135 fps, E(l-P 1 I1Sk 3) should be roughly one-half of

E(l-P1 JI).

The design stress velocity S0 is 100 fps. Thus, k 1=1.4, k2=1.8, and k3=1.35.

Equation (14), for g, and g2 specified in section III, becomes

E(P1 ; kB(),6() c(1.+ ) (1+tk 6)-k

1( ~ (•-al~ _l-) (21)

+#

The optimal k, k0 , is found on a computer by a simple search program.

Certain a and kl,k 2, k3 result in difficulties in computation.
6-For example, if Bk -0, then on the computer

I - (l1+k )-a = 0

whereas a simple expansion shows that

1 - (l+Bk )-L + a4k

While such approximations were used whenever possible, it was not possible to

obtain all values in the tables below. A "*" indicates that the computation was

not performed.

Table 1 gives the values of B=B(a), 6=6(a), c=c(a), and k =k (a) for several0 0

different choices of a. The values of ki are kY=.14, k 2=1 .8, and k 3=1.35.

Observe that k is a very stable function of a.0
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TABLE I
VALUES OF f, 6, c, AND OPTIMAL STRESS k FOR SELECTED VALUES OF c

0

8 8
.3 3.07xi0 46.42 1.53x0- 1.96
.4 4.22x10- 7  37.71 2.81x10- 7  1.35
.5 .0000018 32.69 .0000015 1.36
.6 .0000044 29.45 .0000044 1.37
.7 .0000080 27.23 .0000093 1.38
.8 .0000120 2S.61 .00001S9 1.38
.9 .0000160 24.38 .0000240 1.39

1.0 .0000198 23.43 .0000330 1.39
2.0 .0000370 19.48 .0000123 1.43
3.0 .0000365 18.30 .000182S 1.45
4.0 .0000330 17.74 .0002198 1.46
5.0 .0000294 17.42 .0002450 1.47

10.0 .0000181 16.79 .0003021 1.48
15.0 .0000129 16.58 .0003232 1.49
20.0 .0000100 -16.48 .0003342 1.49
25.0 .0000082 16.42 .0003409 1.49
30.0 .0000069 16.38 .0003454 1.49
35.0 .0000060 16.3S .0003487 1.49
40.0 .00000S3 16.33 .0003512 1.49
45.0 .0000047 16.32 .0003530 1.49.
50.0 .0000042 16.30 .0003546 1.49

Values of the prior standard deviation, V /2(a), are plotted as a function
of stress k in Figure 2 for several choices of a. As can be seen, the prior
standard deviation decreases as a increases. Figure 3 gives a plot of E(P),

E(PISk) and E(PISk) as a function of stress k for ot=0.1. It is observed that

rp(Pf) < F - F.(PIS).
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Also, it is easy to see that the asymptote for E(PIS) is

lim E(PIS) = lim 1,2a -=
k-oo k- l+

Figures 4-7 give plots similar to Figure 3 for a = 0.5, 1.0, 10.0. and

50.0, respectively.

Earlier, in section III, we suggested the a could be chosen to coincide

with the experimenter's prior estimate of the variance at a given stress k.

It is also possible to choose a by use of Figures 3-7. From these figures,

it is observed that the difference between the prior and posterior expected

survival probabilities is larger for smaller values of a. That is, for small

values of a, the expected survival probability is more sensitive to the test

result than for large values of a.

Let us now examine the sensitivity of the optimal test stress ko, as given

by the solution to (21), to variations in the answers to questions 1, 2, and

3. It is important to do this since the answers to these questions may be in-

accurate. Such inaccuracy may be due to either lack of precise knowledge by

the person(s) answering the questions or lack of clear understanding of the

precise information being solicited in the questions.

First, consider the sensitivity of the optimal test stress to changes

in kl and/or k 2 . Tables 2-5 give the optimal test stress ko as a funct.ion of

several choices of k, and k2 for a = 0.5, 1.0, 10.0, and 50.0, respectively.

In Tables 2-5, k3 = 1.35.

TABLE 2.

OPTIMAL TEST STRESS k FOR SEVERAL
VALUES OF ki AND k 2  (a = 0.5 AND k 3 = 1.35)

k1

1.2 1.3 1.4 1.5 1.6

1.6 1.17 1.26 1.87 * *

1.7 1.18 1.27 1.36 * *

k 1.8 1.18 1.27 1.36 * *

1 .9 1 . 19 1.27 1.37 * 1.90

2.0 1.19 1.28 * 1.46 1.93
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TABLE 3.

OPTIMAL TEST STRESS ko FOR SEVERAL
VALUES OF ki AND k 2  (a 1.0 AND k 3  1.35)

ki

1.2 1.3 1.4 1.5 1.6

1.6 1.21 1.29 * * *

1.7 1.23 1.30 1.38 1.96 *

k 1.8 1.25 1.32 1.39 1.51 1.812

1.9 1.26 1.33 1.41 1.49 1.63

2.0 1.28 1.35 1.42 1.50 1.58

TABLE 4.

OPTIMAL TEST STRESS ko FOR SEVERAL
VALUES OF ki AND k2  (a = 10.0 AND k 3 = 1.35)

k•

1.2 1.3 1.4 1.5 1.6

1.6 1.32 1.36 1.42 1.21 *

1.7 1.36 1.40 1.45 1.81 1.08

1.8 1.40 1.44 1.48 1.54 1.84

1.9 1.44 1.47 1.52 1.57 1.62

2.0 1.47 1.51 1.55 1.60 1.65
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TABLE 5.

OPTIMAL TEST STRESS ko FOR SEVERAL
VALUES OF ki AND k2  (ca = 50.0 AND k 3  1.35)

k1

1.2 1.3 1.4 1.5 1.6

1.6 1.34 1.37 1.43 * *

1.7 1.38 1.41 1.46 * 1.09

k 1.8 1.42 1.45 1.49 1.54 1.23
2

1.9 1.46 1.49 1.53 1.58 1.63

2.0 1.50 1.53 1.57 1.61 1.66

It is observed that the optimal test stress ranges between 1.09 (a = 50,

ki = 1.6, k 2 = 1.7) and 1.93 (a = 0.5, ki = 1.6, k 2 = 2.0). For a given ct,

the optimal test stress is fairly insensitive to changes in k for small

values of k . On the other hand, for a given a, the optimal test stress is

fairly insensitive to changes in ki for large values of k2 . As both ki and

k2 increase, the optimal test stress is fairly stable.

Now consider the sensitivity of the optimal test plan to changes in k 3'

since this quantity was held fixed in Tables 2-5. Table 6 gives the optimal

test stress ko as a function of several choices of k3 and cc for the nominal

values ki= 1.4 and k = 1.8. It is observed that k is quite insensitive to

TABLE 6.

OPTIMAL TEST STRESS ko FOR SEVERAL
VALUES OF k 3 AND at (k 1 = 1.4 AND k = 1.8)

k 3

1.10 1.20 1.30 1.35 1.40 1.50

0.5 1.39 1.38 1.36 1.36 1.36 1.35

1.0 1.43 1.41 1.40 1.39 1.39 1.38

10.0 1.49 1.49 1.48 1.48 1.48 1.48

50.0 1.50 1.50 1.49 1.49 1.49 1.49
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changes in k3 for a fixed value of a. This is an important result, since the

answer to Question 3 is likely to be somewhat arbitrary in practice. That

is, in practice, k. may be an imprecisely known value.

V. CONCLUSIONS

A Bayesian procedure for determining the optimal test stress for a single

test unit has been developed. The procedure is both objective as well as sub-

jective. It is subjective in the sense that the necessary parameters in the

model are estimated from best available information prior to the test results.

These estimates are then used in an objective manner to provide the required

test stress. The test stress provided by this procedure is "optimal" within

the model framework in a certain well-defined sense. Namely, this optimal

test stress maximizes the modeled expected unconditional probability of survival

at the design stress. The model effectively trades between two extremes. The

first represents the increasing likelihood of survival at the design stress

gained as a result of a test unit surviving increasing test stress. This gain

is countered by the correspondingly decreasing probability of test unit sur-

vival as the test stress increases.

The model was used to determine the impact test velocity in an impact

test of a certain radioisotope fuel container. The optimal test velocity was

found to be approximately 30-50 percent above the design impact velocity. In

addition, a limited sensitivity analysis to the subjective estimates required

in fitting the model was conducted. It was observed in this example that the

optimal test velocity was fairly insensitive to the subjective estimates.

This may or may not be true in other applications. Consequently, as a safe-

guard, it is recommended that such a sensitivity analysis be routinely con-

ducted when applying this model in practice.
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